Project
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

154 lines
7.2 KiB

#include <Wire.h>
#include <AFMotor.h>
//Declaring some global variables
int gyro_x, gyro_y, gyro_z = 0;
long gyro_x_cal, gyro_y_cal, gyro_z_cal = 0.0;
boolean set_gyro_angles;
long acc_x, acc_y, acc_z, acc_total_vector = 0.0;
float angle_roll_acc, angle_pitch_acc = 0.0;
float angle_pitch, angle_roll = 0.0;
int angle_pitch_buffer, angle_roll_buffer = 0;
float angle_pitch_output, angle_roll_output = 0.0;
long loop_timer = 0.0;
int temp = 0;
AF_DCMotor motor1(1);
AF_DCMotor motor2(2);
AF_DCMotor motor3(3);
AF_DCMotor motor4(4);
void setup() {
Wire.begin(); //Start I2C as master
setup_mpu_6050_registers(); //Setup the registers of the MPU-6050
for (int cal_int = 0; cal_int < 1000 ; cal_int ++) { //Read the raw acc and gyro data from the MPU-6050 for 1000 times
read_mpu_6050_data();
gyro_x_cal += gyro_x; //Add the gyro x offset to the gyro_x_cal variable
gyro_y_cal += gyro_y; //Add the gyro y offset to the gyro_y_cal variable
gyro_z_cal += gyro_z; //Add the gyro z offset to the gyro_z_cal variable
delay(3); //Delay 3us to have 250Hz for-loop
motor1.setSpeed(200);
motor2.setSpeed(200);
motor3.setSpeed(200);
motor4.setSpeed(200);
}
// divide by 1000 to get avarage offset
gyro_x_cal /= 1000;
gyro_y_cal /= 1000;
gyro_z_cal /= 1000;
Serial.begin(9600);
loop_timer = micros(); //Reset the loop timer
}
void loop() {
read_mpu_6050_data();
//Subtract the offset values from the raw gyro values
gyro_x -= gyro_x_cal;
gyro_y -= gyro_y_cal;
gyro_z -= gyro_z_cal;
//Gyro angle calculations . Note 0.0000611 = 1 / (250Hz x 65.5)
angle_pitch += gyro_x * 0.0000611; //Calculate the traveled pitch angle and add this to the angle_pitch variable
angle_roll += gyro_y * 0.0000611; //Calculate the traveled roll angle and add this to the angle_roll variable
//0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians
angle_pitch += angle_roll * sin(gyro_z * 0.000001066); //If the IMU has yawed transfer the roll angle to the pitch angel
angle_roll -= angle_pitch * sin(gyro_z * 0.000001066); //If the IMU has yawed transfer the pitch angle to the roll angel
//Accelerometer angle calculations
acc_total_vector = sqrt((acc_x * acc_x) + (acc_y * acc_y) + (acc_z * acc_z)); //Calculate the total accelerometer vector
//57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians
angle_pitch_acc = asin((float)acc_y / acc_total_vector) * 57.296; //Calculate the pitch angle
angle_roll_acc = asin((float)acc_x / acc_total_vector) * -57.296; //Calculate the roll angle
angle_pitch_acc -= 0.0; //Accelerometer calibration value for pitch
angle_roll_acc -= 0.0; //Accelerometer calibration value for roll
if (set_gyro_angles) { //If the IMU is already started
angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004; //Correct the drift of the gyro pitch angle with the accelerometer pitch angle
angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004; //Correct the drift of the gyro roll angle with the accelerometer roll angle
}
else { //At first start
angle_pitch = angle_pitch_acc; //Set the gyro pitch angle equal to the accelerometer pitch angle
angle_roll = angle_roll_acc; //Set the gyro roll angle equal to the accelerometer roll angle
set_gyro_angles = true; //Set the IMU started flag
}
//To dampen the pitch and roll angles a complementary filter is used
angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch_acc * 0.1; //Take 90% of the output pitch value and add 10% of the raw pitch value
angle_roll_output = angle_roll_output * 0.9 + angle_roll_acc * 0.1; //Take 90% of the output roll value and add 10% of the raw roll value
Serial.print(" | Angle = "); Serial.println(angle_pitch_output);
while (micros() - loop_timer < 10);
{//Wait until the loop_timer reaches 4000us (250Hz) before starting the next loop
loop_timer = micros();//Reset the loop timer
}
if (angle_pitch_output > 3)
{
motor1.run(FORWARD);
motor2.run(FORWARD);
motor3.run(FORWARD);
motor4.run(FORWARD);
}
else if (angle_pitch_output < -3)
{
motor1.run(BACKWARD);
motor2.run(BACKWARD);
motor3.run(BACKWARD);
motor4.run(BACKWARD);
}
else if (angle_pitch_output >= -3 || angle_pitch_output <= 3)
{
motor1.run(RELEASE);
motor2.run(RELEASE);
motor3.run(RELEASE);
motor4.run(RELEASE);
}
}
void setup_mpu_6050_registers() {
//Activate the MPU-6050
Wire.beginTransmission(0x68); //Start communicating with the MPU-6050
Wire.write(0x6B); //Send the requested starting register
Wire.write(0x00); //Set the requested starting register
Wire.endTransmission();
//Configure the accelerometer (+/-8g)
Wire.beginTransmission(0x68); //Start communicating with the MPU-6050
Wire.write(0x1C); //Send the requested starting register
Wire.write(0x10); //Set the requested starting register
Wire.endTransmission();
//Configure the gyro (500dps full scale)
Wire.beginTransmission(0x68); //Start communicating with the MPU-6050
Wire.write(0x1B); //Send the requested starting register
Wire.write(0x08); //Set the requested starting register
Wire.endTransmission();
}
void read_mpu_6050_data() { //Subroutine for reading the raw gyro and accelerometer data
Wire.beginTransmission(0x68); //Start communicating with the MPU-6050
Wire.write(0x3B); //Send the requested starting register
Wire.endTransmission(); //End the transmission
Wire.requestFrom(0x68, 14); //Request 14 bytes from the MPU-6050
while (Wire.available() < 14); //Wait until all the bytes are received
acc_x = Wire.read() << 8 | Wire.read();
acc_y = Wire.read() << 8 | Wire.read();
acc_z = Wire.read() << 8 | Wire.read();
temp = Wire.read() << 8 | Wire.read();
gyro_x = Wire.read() << 8 | Wire.read();
gyro_y = Wire.read() << 8 | Wire.read();
gyro_z = Wire.read() << 8 | Wire.read();
}