Cloud'!

I[Iivakag TeEPLEXOUEVWV

1. Cloud - Intro
1.1. Cloud Computing Tutorial for Beginners
2. Cloud computing architecture
2.1. Virtualization
2.2. Containerization
2.3. Virtual Machines vs Docker Containers
2.3.1. Docker Containers
2.3.2. Virtual Machines
3. Orchestration
3.1. Kubernetes vs Docker Swarm
3.2. Technical Comparisons
3.3. Conclusion
3.4. Popularity of searches for each platform
3.5. Short_answer
4. Docker
4.1. Images
4.1.1. Dockerfile
4.1.2. docker build
4.1.3. Displaying Docker Images
4.1.4. Removing Docker Images
4.1.5. Docker Hub
4.2. Containers
4.2.1. Running a Container

4.2.2. Listing of Containers

4.2.3. Display the running processes of a container

4.2.4. Stop a running container
4.2.5. Attach a running container
4.2.6. Delete container
4.2.7. Container Logging
4.3. Volumes
4.4. repositories
4.4.1. Create
4.4.2. Push
4.4.3. Pull

© © © U1 U1 U1 B W W W w N NN

T e S S g e ey
G U b R R R W W W WNNNN R R e O O

1. Cloud - Intro

Cloud computing is the on-demand availability of computer system resources, especially data
storage and computing power, without direct active management by the user. The term is generally
used to describe data centers available to many users over the Internet.

Large clouds, predominant today, often have functions distributed over multiple locations from
central servers. If the connection to the user is relatively close, it may be designated an edge server.

Clouds may be limited to a single organization (enterprise clouds), or be available to many
organizations (public cloud).

Cloud computing relies on sharing of resources to achieve coherence and economies of scale.

1%

Sarsam

,_,m,/’ Appllcatlnn \m
n asn = u
L

=
nkaring = Calabaratan

| F'Iatfu:u rmm
- = E

Infrastruu:ture

l \ Campte | "“_"/
Phana

Cloud com putmg

Tablaty

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Cloud_computing

1.1. Cloud Computing Tutorial for Beginners

* Cloud Computing Tutorial for Beginners

P https://www.youtube.com/watch?v=RWgW-CgdIk0 (YouTube video)

2. Cloud computing architecture

Cloud computing architecture refers to the components and subcomponents required for cloud
computing. These components typically consist of a front end platform (fat client, thin client,
mobile device), back end platforms (servers, storage), a cloud based delivery, and a network
(Internet, Intranet, Intercloud). Combined, these components make up cloud computing
architecture.

https://en.wikipedia.org/wiki/Cloud_computing
https://www.youtube.com/watch?v=RWgW-CgdIk0

2.1. Virtualization

In computing, virtualization refers to the act of creating a virtual (rather than actual) version of
something, including virtual computer hardware platforms, storage devices, and computer
network resources.

2.2. Containerization

Containerization has become a major trend in software development as an alternative or
companion to virtualization. It involves encapsulating or packaging up software code and all its
dependencies so that it can run uniformly and consistently on any infrastructure. The technology is
quickly maturing, resulting in measurable benefits for developers and operations teams as well as
overall software infrastructure.

2.3. Virtual Machines vs Docker Containers

* A container image is a lightweight, stand-alone, executable package of a piece of software that
includes everything needed to run it.

Docker is the service to run multiple containers on a machine (node) which can be on a vitual
machine or on a physical machine.

* Avirtual machine is an entire operating system (which normally is not lightweight).

o Virtual Machines vs Docker Containers

P https://www.youtube.com/watch?v=TvnZTi_gaNc (YouTube video)

2.3.1. Docker Containers

https://www.youtube.com/watch?v=TvnZTi_gaNc

Containerized Applications

App A

Docker

Host Operating System

Infrastructure

2.3.2. Virtual Machines

r

Virtual Machine | | Virtual Machine | | Virtual Machine

Guest Guest Guest
Operating Operating Operating
System System System

Hypervisor

Infrastructure

3. Orchestration

Container orchestration automates the deployment, management, scaling, and networking of
containers. Enterprises that need to deploy and manage hundreds or thousands of Linux®
containers and hosts can benefit from container orchestration. Container orchestration can be used
in any environment where you use containers. It can help you to deploy the same application
across different environments without needing to redesign it. And microservices in containers
make it easier to orchestrate services, including storage, networking, and security.

Containers give your microservice-based apps an ideal application deployment unit and self-
contained execution environment. They make it possible to run multiple parts of an app
independently in microservices, on the same hardware, with much greater control over individual
pieces and life cycles.

Managing the lifecycle of containers with orchestration also supports DevOps teams who integrate
it into CI/CD workflows. Along with application programming interfaces (APIs) and DevOps teams,
containerized microservices are the foundation for cloud-native applications.

Container orchestration used for:

* Provisioning and deployment

* Configuration and scheduling

* Resource allocation

* Container availability

 Scaling or removing containers based on balancing workloads across your infrastructure
* Load balancing and traffic routing

* Monitoring container health

* Configuring applications based on the container in which they will run

* Keeping interactions between containers secure

3.1. Kubernetes vs Docker Swarm

* Kubernetes vs Docker Swarm

P https://www.youtube.com/watch?v=FmrAGliHvzQ (YouTube video)

3.2. Technical Comparisons

https://www.youtube.com/watch?v=FmrAGliHvzQ

% Kubernetes

Docker Swarm

Reported Scalability

5,000 Node Cluster
With 150,000 pods

1,000 Node Cluster
With 30,000 containers

Service Discovery

Services, each given a VIP,
group Pods together

These services can be reached
through environment variables
provided in a pod. For example:
{SVCNAME_SERVICE_HOST}
DNS is optional. This includes
the third party offerings such as
SkyDNS, CoreDNS

Docker Engine, while
participating in the Swarm,
becomes a service registry

Two Methods for Discovery

1) Relies on embedded DNS
and virtual IP and operates on
Network and Transport Layer
2) Application Layer DNS round
robin with third party support

Networking

Kubernetes uses an overlay
network that lets pods
communicate across multiple
nodes

Containers inside pods share a
network stack and can
communicate via local host
Services group together pods
via a network proxy and are

assigned a virtual IP

* QOverlay networks connect

Docker daemons and use the
overlay network driver

Services connect to this overlay
network

Uses a customizable ingress
network to load balance
among service - the module
which does this is called IPVS

Persistent Data Volumes

Volumes are directly attached
to pods and share its lifecycle
Containers in Pod can access
volume

Provides support for multiple
types of Volumes: nsf,
awsElasticBlockStore,
configmap, vSphereVolume,

and others

¢ Two methods of persistent

storage which are familiar to
Docker users.

1) Bind Mounts: File or directory
from the machine is mounted

onto containers

2) Volumes: Mountable storage

managed by docker itself that

exist beyond container lifecycle

Monitoring and Logging

Comprehensive solution for
monitoring and logging
included with Kubernetes itself
Default Kubernetes GUI for
logging and monitoring
Option to add third party
solutions

* Does not include default

solution for logging and
monitoring

Many third party solutions that
can be integrated with Docker
Swarm - yet complexity of

implementation varies

High Availability

High Availability Supported
Services perform health checks
directly on pods

Workload Obijects (Replication
Controller, Deployments, etc..)
can be deployed across
multiple nodes

Etcd is run across multiple

nodes and can tolerate failures

High Availability Supported
Perform health checks on
docker daemon hosts

Restarts containers on a new
host if host failure occurs.

Uses RAFT algorithm ensure
cluster fault tolerance (requires
majority of nodes to be

available)

3.3. Conclusion

When comparing Docker Swarm vs Kubernetes, it becomes apparent that the origins of both
platforms have played key roles in shaping their features and communities today.

Docker, realizing the strength of its container technology, decided to build a platform that made it
simple for Docker users to begin orchestrating their container workloads across multiple nodes.

However, their desire to preserve this tight coupling can be said to have limited the extensibility of
the platform.

Kubernetes, on the other hand, took key concepts taken from Google Borg, and, from a high level

perspective, decided to make containerization fit into the former platform’s existing workload

orchestration model. This resulted in Kubernetes emphasis on reliability, sometimes at the cost of
simplicity and performance.

3.4. Popularity of searches for each platform

® docker swarm @ kubernetes

Origin: https://www.nirmata.com/2018/01/15/orchestration-platforms-in-the-ring-kubernetes-vs-
docker-swarm

3.5. Short answer

https://www.nirmata.com/2018/01/15/orchestration-platforms-in-the-ring-kubernetes-vs-docker-swarm
https://www.nirmata.com/2018/01/15/orchestration-platforms-in-the-ring-kubernetes-vs-docker-swarm

Info
+ Docker:!"

o Docker is the container technology that allows you to containerize your
applications.

o Docker is the core of using other technologies.
* Docker Compose

o Docker Compose allows configuring and starting multiple Docker
containers.

o Docker Compose is mostly used as a helper when you want to start multiple
Docker containers and doesn’t want to start each one separately using
docker run

> Docker Compose is used for starting containers on the SAME host.

> Docker Compose is used instead of all optional parameters when building
and running a single docker container.

o ¢ Docker Swarm

o Docker swarm is for running and connecting containers on multiple
hosts.

o Docker swarm is a container cluster management and orchestration
tool.

= It manages containers running on multiple hosts and does things like
scaling, starting a new container when one crashes, networking
containers ...

o Docker swarm is docker in production.

o It is the native docker orchestration tool that is embedded in the Docker
Engine.

o The docker swarm file named stack file is very similar to a Docker compose
file.

* Kubernetes
o Kubernetes is a container orchestration tool developed by Google.

o Kubernete’s goal is very similar to that for Docker swarm.

o Update
Docker support docker stack deploy --orchestrator=kubernetes options

4. Docker

4.1. Images

In Docker, everything is based on Images. An image is a combination of a file system and

10

https://github.com/docker/compose-on-kubernetes
https://docs.docker.com/engine/reference/commandline/stack_deploy/#options

parameters.

4.1.1. Dockerfile

A Dockerfile is a simple text file that contains a list of commands that the Docker client calls while
creating an image. It’s a simple way to automate the image creation process. The best part is that
the commands you write in a Dockerfile are almost identical to their equivalent Linux commands.
This means you don’t really have to learn new syntax to create your own dockerfiles.

Dockerfile
FROM ubuntu:16.04
ENV DEBIAN FRONTEND noninteractive
RUN apt-get update -y && \

apt-get -y install gcc && \
rm -rf /var/lib/apt/lists/*

4.1.2. docker build

docker build
docker build -t ImageName:TagName dir
Options
-t 0 is to mention a tag to the image
ImageName 0 This is the name you want to give to your image.
TagName 0 This is the tag you want to give to your image.

Dir 0 The directory where the Docker File is present.

docker build example

docker build 0t myimage:0.1 .

4.1.3. Displaying Docker Images
To see the list of Docker images on the system, you can issue the following command.

docker images

docker images

This command is used to display all the images currently installed on the system.

Output:

11

TAG - This is used to logically tag images.

* Image ID - This is used to uniquely identify the image.

Created - The number of days since the image was created.

Virtual Size - The size of the image.

4.1.4. Removing Docker Images
The Docker images on the system can be removed via the docker rmi command.

docker images
docker rmi

This command is used to remove Docker images.
Syntax

docker rmi ImagelD

4.1.5. Docker Hub

Docker Hub is a registry service on the cloud that allows you to download Docker images that are
built by other communities. You can also upload your own Docker built images to Docker hub.

To run apache, you need to run the following command:

run docker image from Docker Hub
docker run -p 8080:80 apache
Note the following points about the above command [
Here, apache is the name of the image we want to download from Docker hub and
install on our Ubuntu machine.

-p is used to map the port number of the internal Docker image to our main Ubuntu
server so that we can access the container accordingly.

4.2. Containers

Containers are instances of Docker images that can be run using the Docker run command. The
basic purpose of Docker is to run containers.

4.2.1. Running a Container

Running of containers is managed with the Docker run command. To run a container in an
interactive mode, first launch the Docker container.

12

run docker image

docker run 0it myimage /bin/bash

4.2.2. Listing of Containers

One can list all of the containers on the machine via the docker ps command. This command is used
to return the currently running containers.

run docker image

docker ps

4.2.3. Display the running processes of a container
With this command, you can see the top processes within a container. Syntax
docker top
docker top ContainerID
Options
ContainerID 0 This is the Container ID for which you want to see the top

processes.

4.2.4. Stop a running container
This command is used to stop a running container.

docker stop
docker stop ContainerID
Options

ContainerID 0 This is the Container ID which needs to be stopped.

4.2.5. Attach a running container

This command is used to attach to a running container.

13

docker
docker attach ContainerID
Options

ContainerID 0 This is the Container ID to which you need to attach.

4.2.6. Delete container
This command is used to delete a container.

docker rm
docker rm ContainerID
Options

ContainerID 0 This is the Container ID which needs to be removed.

4.2.7. Container Logging
Logging is also available at the container level.

docker log
Docker logs containerID
Parameters

containerID 0 This is the ID of the container for which you need to see the logs.

4.3. Volumes

Volumes are the preferred mechanism for persisting data generated by and used by Docker
containers.

docker volumes

docker run -d --name mycontainer -v /var/www/html:/var/html nginx:latest

4.4. repositories

You might have the need to have your own private repositories. You may not want to host the
repositories on Docker Hub. For this, there is a repository container itself from Docker. Let’s see
how we can download and use the container for registry.

14

4.4.1. Create

docker registry
docker run Od Op 5000:5000 0-name registry registry:2
The following points need to be noted about the above command:

Registry is the container managed by Docker which can be used to host private
repositories.

The port number exposed by the container is 5000. Hence with the Op command, we
are mapping the same port number to the 5000 port number on our localhost.

We are just tagging the registry container as 020, to differentiate it on the
Docker host.

The Od option is used to run the container in detached mode. This is so that the
container can run in the background

4.4.2. Push
use the Docker push command to push the image to our private repository.

docker registry

docker push localhost:5000/myimage

4.4.3. Pull
use the following Docker pull command to pull image from our private repository.

docker registry

docker pull localhost:5000/myimage

15

[1] origin info

16

Reminder

Caminante, no hay camino,
se hace camino al andar.

Wanderer, there is no path,
the path is made by walking.

Antonio Machado Campos de Castilla

https://stackoverflow.com/questions/47536536/whats-the-difference-between-docker-compose-and-kubernetes

	Cloud !
	Πίνακας περιεχομένων
	1. Cloud - Intro
	1.1. Cloud Computing Tutorial for Beginners

	2. Cloud computing architecture
	2.1. Virtualization
	2.2. Containerization
	2.3. Virtual Machines vs Docker Containers
	2.3.1. Docker Containers
	2.3.2. Virtual Machines

	3. Orchestration
	3.1. Kubernetes vs Docker Swarm
	3.2. Technical Comparisons
	3.3. Conclusion
	3.4. Popularity of searches for each platform
	3.5. Short_answer

	4. Docker
	4.1. Images
	4.1.1. Dockerfile
	4.1.2. docker build
	4.1.3. Displaying Docker Images
	4.1.4. Removing Docker Images
	4.1.5. Docker Hub

	4.2. Containers
	4.2.1. Running a Container
	4.2.2. Listing of Containers
	4.2.3. Display the running processes of a container
	4.2.4. Stop a running container
	4.2.5. Attach a running container
	4.2.6. Delete container
	4.2.7. Container Logging

	4.3. Volumes
	4.4. repositories
	4.4.1. Create
	4.4.2. Push
	4.4.3. Pull

