
Vim !

vim

Vim is the editor of choice for many developers and power users.

It’s a modal text editor based on the vi editor.

It inherits the key bindings of vi, but also adds a great deal of functionality and extensibility
that are missing from the original vi.

vim modals:

insert mode and command mode.

 vim starts in command mode.

• command mode

◦ In this mode, characters you type is interpreted as a command

• insert mode

◦ in insert mode, the characters you type is just inserted.

To enter insert mode, press i. To get back in command
mode, press esc

Πίνακας περιεχομένων
1. A simple workflow example with the vim editor. 2

2. The vimrc . 5

2.1. settings. 5

2.2. plugins . 5

3. Vim Key Bindings . 6

3.1. Move Bindings . 6

3.2. All . 8

1

All editors have a command and an input mode.

Most editors default to the input mode whithin which the text we type is
interpretted as a raw string to be appendeed to the cursors position.

To "enter" command mode we the have to use some king of control key/button.
Thus the command mode is disguised and we only use it briefly.

Vim on the other hand has three distinct modes:

• normal mode: The COMMAND mode. Here we can insert commands that can
perform all sorts of tasks just like the buttons we mentioned before. The
difference is that vim will stay in normal mode unsless we tell it to enter
another mode. This alowes for faster commands (no need for menus and
mouse clicks) but also for more complicated commands (combos).

• insert mode: the mode to INSERT text like in any other editor

• visual mode: this mode exists in all editors, although it usually is combined into
insert mode. Here we can do visual tasks like selecting text or highlighting
regions.

1. A simple workflow example with the vim
editor.
Lets suppose we want to create a simple program that will print out "Hello world".

Like any good programmer we want our headder declarations seperatelly from our functions.

So lets create our starting file "myprint.h" using the vim <path to file> command

in our case

vim ./myprint."h

That should have created the file and opened it inside the vim editor.

We now are in command mode, but since we want to create some code we want to enter edit mode.
We can do that by pressing the 'i' key.

Now lets add some text. Folowing our example we have:

2

#include <string>
#include <stdio.h>

class MyPrint
 {
 public:
 std::string message="Hello World";
 int PrintMessage();
 };

Ok our headder is now ready. Now we have to implement the "PrintMessage" function.

Hence, lets create the source file. To do that we could exit vim and simply repeat the above steps
but that would be really impracticall. And vim is all about practicallity so there ought to be a
simpler way!?

Of course there is! We can simply open a new tab from whithin the existing editor!!!

To do that simply type the command "tabnew <path to file>" in command mode, in our case
"tabnew ./myprint.cc".

Remember commands, unlike hotkeys, need a colon (:) at the beggining. So
litterally speaking our command would be ":tabnew ./myprint.cc"

Oops! I think I forgot how I named my function! I will have to switch to the other tab again to look
at the header.

To do that i can simply hit "gt" in command mode. This hotkey rotates through the tabs clockwise.

If I wanted to rotate anticlockwize i could use "Gt" but since i only have two that would be kinda
stupid.

Like in this one, in most cases hitting shift along with the command does the exact
opposite.(gt moves right, Gt moves left)

For example 'o' inserts an empty line underneath the one we are on.'O' will do the
the opposite, it will insert a blank line above.

the 'o'/'O' command will also initiate insert mode so we are ready
to rock in our new line!

But now lets get back to our program.

I now finally remember the name of the function so I will go ahead and write my implementation
as follows:

3

#include <myprint.h>

MyPrint::MyPrint()
 {
 }

int MyPrint::PrintMessage(void)
 {
 printf("%s",this->message.c_str());
 return 0;
 }

But I now realized I forgot to declare my constructor in my header file.

Well instead of writing the same thing again we can simply copy it right?

To copy move to the desired line and hit "yy" in command mode. NO that is not a typo, hit "y" two
times!

Now move to the desired line inside the header file and press "p". This will insert the line just below
the cursor.

After pasting our header should look something like this:

#include <string>
#include <stdio.h>

class MyPrint
 {
 public:
 std::string message="Hello World";
 MyPrint::MyPrint()
 int PrintMessage();
 };

YES! This this code was obviously copied and pasted from above using the same hotkey you used
right now!!!

Now we can simply delete the parts we dont need and our coding is done for today!

4

#include <string>
#include <stdio.h>

class MyPrint
 {
 public:
 std::string message="Hello World";
 MyPrint()
 int PrintMessage();
 };

Lets simply use the "w" command for writing the file and the "q" command for quitting the app. (To
write/quit multiple tabs just append "all" for example :wall or :qall)

If you would like to execute a system command (like mv or more likely git) you can
do that from whithin vim by adding a "!" at the beggining.

For example:

:!git commit -m"my program is ready!"

2. The vimrc

2.1. settings
Vim, like all editors has different configuration options for the user to use (or not to use!);

These are written and saved whithin the "vimrc".

Typically this file resides inside the home directory of a user like so "~/.vimrc".

Here we can add all sorts of settings like colorschemes or line numbers, or even more breaking
changes like changes to visual or normal mode.

~ = home directory [tilde]. This corresponds to the $HOME internal variable.

$HOME is an environment variable that contains the location of your home
directory, usually /home/$USER.

The $ tells us it’s a variable.

2.2. plugins
The real power of vim shows when we add some basic plugins, like a linter, an autocomplete
engine and a good colorscheme!

5

All of that can be done using a simple tool called pluggin manager!

There are many filemanagers out there. One of the most poppular and the one we use is "Plugged".

For a fully loaded vimrc and an activelly maintained and updated repo please visit
https://gitlab.com/dianshane/vim

You can also reffer there for any questions if you would like something explained.

To download plug and find out how to install plugins you can follow the instructions found here.

3. Vim Key Bindings

3.1. Move Bindings
Table 1. Key combinations

Key Action Followed by

b back word

e end of word

f find character after cursor in
current line

m mark current line and position
mark character

tag (a-z)

n repeat last search

t same as "f" but cursor moves to
just before found character

character to find

w move foreward one word

z position current line CR = top; "." = center; "-"=bottom

B move back one Word

E move to end of Word

F backwards version of 'f' character to find

G goto line number prefixed, or
goto end if none

H home cursor - goto first line on
screen

J join current line with next line

L goto last line on screen

M goto middle line on screen

6

https://gitlab.com/dianshane/vim
https://github.com/junegunn/vim-plug

Key Action Followed by

N repeat last search, but in
opposite direction of original
search

T backwards version of "t"
character to find

W foreward Word

0 move to column zero

! shell command filter cursor
motion command, shell
command

$ move to end of line

% match nearest [],(),{} on line, to
its match (same line or others)

^ move to first non-whitespace
character of line

(move to previous sentence

) move to next sentence

| move to column zero

- move to first non-whitespace of
previous line

+ move to first non-whitespace of
next line

[move to previous "{…}" section "["

] move to next "{…}" section "]"

{ move to previous blank-line
separated section

"{"

} move to next blank-line
separated section

"}"

' move to marked line, first non-
whitespace

character tag (a-z)

` move to marked line,
memorized column

character tag (a-z)

/ search forward search string, ESC or CR

? search backward search string, ESC or CR

^D down half screen

^J line down

7

Key Action Followed by

^T go to the file/code you were
editing before the last tag jump

^U up half screen

3.2. All
Allmost complete key binding reference

Definitions

• word - a lower-case word ("w", "b", "e" commands) is defined by a consecutive
string of letters, numbers, or underscore, or a consecutive string of characters
that is not any of {letters, numbers, underscore, whitespace}

• Word - an upper-case word ("W", "B", "E" commands) is a consecutive sequence
of non-whitespace.

• cursor motion command - any command which positions the cursor is ok
here, including the use of numeric prefixes. In addition, a repeat of the edit
command usually means to apply to the entire current line. For example, "<<"
means shift current line left; "cc" means replace entire current line; and "dd"
means delete entire current line.

Key Bindings in Editing Modes - While in any edit mode (insert, replace, etc.)
there are some keys that are used to adjust behaviour, rather than just to insert
text.

ESC - leave edit mode, return to command mode
^D - move line backwards one shiftwidth. shiftwidth must be set, and
either the line must be newly added, or ^T must have been used.
^T - move all after cursor forwards one shiftwidth

Table 2. Key combinations

Key Action Followed by

a enter insertion mode after
current character

text, ESC

b back word

c change command cursor motion command

d delete command cursor motion command

e end of word

f find character after cursor in
current line

8

Key Action Followed by

i enter insertion mode before
current character

text, ESC

m mark current line and position
mark character

tag (a-z)

n repeat last search

o open line below and enter
insertion mode

text, ESC

p put buffer after cursor

r replace single character at
cursor

replacement character expected

s substitute single character with
new text

text, ESC

t same as "f" but cursor moves to
just before found character

character to find

u undo

w move foreward one word

y yank command cursor motion command

z position current line CR = top; "." = center; "-"=bottom

A enter insertion mode after end
of line

text, ESC

B move back one Word

C change to end of line text, ESC

D delete to end of line

E move to end of Word

F backwards version of "f" character to find

G goto line number prefixed, or
goto end if none

H home cursor - goto first line on
screen

I enter insertion mode before
first non-whitespace character

text, ESC

J join current line with next line

L goto last line on screen

M goto middle line on screen

N repeat last search, but in
opposite direction of original
search

9

Key Action Followed by

O open line above and enter
insertion mode

text, ESC

P put buffer before cursor

Q leave visual mode (go into "ex"
mode)

R replace mode - replaces through
end of current line, then inserts

text, ESC

S substitute entire line - deletes
line, enters insertion mode

text, ESC

T backwards version of "t"
character to find

U restores line to state when
cursor was moved into it

W foreward Word

Y yank entire line

0 move to column zero

1-9 numeric precursor to other
commands [additional numbers
(0-9)] command

! shell command filter cursor
motion command, shell
command

@ vi eval buffer name (a-z)

$ move to end of line

% match nearest [],(),{} on line, to
its match (same line or others)

^ move to first non-whitespace
character of line

& repeat last ex substitution (":s …
") not including modifiers

(move to previous sentence

) move to next sentence

| move to column zero

- move to first non-whitespace of
previous line

_ similar to '^' but uses numeric
prefix oddly

10

Key Action Followed by

+ move to first non-whitespace of
next line

[move to previous "{…}" section "["

] move to next "{…}" section "]"

{ move to previous blank-line
separated section

"{"

} move to next blank-line
separated section

"}"

; repeat last "f", "F", "t", or "T"
command

' move to marked line, first non-
whitespace

character tag (a-z)

` move to marked line,
memorized column

character tag (a-z)

: ex-submode ex command

" access numbered buffer; load
or access lettered buffer

1-9,a-z

~ reverse case of current
character and move cursor
forward

, reverse direction of last "f", "F",
"t", or "T" command

. repeat last text-changing
command

/ search forward search string, ESC or CR

< unindent command cursor motion command

> indent command cursor motion command

? search backward search string, ESC or CR

^D down half screen

^G show status

^J line down

^T go to the file/code you were
editing before the last tag jump

^U up half screen

^Z suspend program

^[(ESC) cancel started command;
otherwise UNBOUND

11

Key Action Followed by

^\ leave visual mode (go into "ex"
mode)

12

	Vim !
	Πίνακας περιεχομένων
	1. A simple workflow example with the vim editor.
	2. The vimrc
	2.1. settings
	2.2. plugins

	3. Vim Key Bindings
	3.1. Move Bindings
	3.2. All

