Sensor node/mote

I[Iivakag TeEPLEXOUEVWV

1. Sensor node 1
2. Sensor node example using IMU sensors 2
2.1. IMU 2
2.2. Connecting It Up 3
2.3. Downloading Libraries 5
2.4. Example Sketch 6
2.4.1. pitch & roll 6

3. Areal AHRS system 8
3.1. Loading the AHRS Sketch 8
3.2. compile 10
3.3. Using AHRS Data 10
3.4. Save/Sending the Data 12
3.5. Visualizing Data 12
3.5.1. The tools, languages, and frameworks 12
Three.js 12
Processing 12

p5.js 12
Processing.py 12

3.5.2. Requirements 13
3.5.3. Write the Processing Sketch 13
3.5.4. Run it 17
Appendix A: Source Code 18

1. Sensor node

A sensor node, also known as a mote, is a node in a sensor network that is capable of performing
some processing, gathering sensory information and communicating with other connected nodes in
the network.

o A mote is a node but a node is not always a mote

The typical architecture of the sensor node

Sensor

Central Unit
Battery i el Memory

(Microprocessor)

!

Communication
Module

The main components of a sensor node are a microcontroller, transceiver/Communication
Module, memory, power source and one or more sensors.

2. Sensor node example using IMU sensors

A basic IMU (Intertial Measurement Unit) generally provides raw sensor data, whereas an AHRS
takes this data one step further, converting it into heading or direction in degrees, converting the
raw altitude data into standard units like feet or meters, etc.

AHRS (Attitude and Heading Reference System)

An attitude and heading reference system (AHRS) consists of sensors on three axes
that provide attitude information for aircraft, including roll, pitch and yaw. These

o are sometimes referred to as MARG (Magnetic, Angular Rate, and Gravity) sensors
and consist of either solid-state or microelectromechanical systems (MEMS)
gyroscopes, accelerometers and magnetometers. They are designed to replace
traditional mechanical gyroscopic flight instruments.

2.1. IMU

b el

Adafruit’s 10DOF (10 Degrees of Freedom) breakout board allows you to capture ten distinct types
of motion or orientation related data.

* LSM303DLHC - a 3-axis accelerometer (up to +/-16g) and a 3-axis magnetometer (up to +/-8.1
gauss) on a single die
* L3GD20 - a 3-axis gyroscope (up to +/-2000 dps)

* BMP180 - A barometric pressure sensor (300..1100 hPa) that can be used to calculate altitude,
with an additional on-board temperature sensor

2.2. Connecting It Up

Basic Setup
* Connect the SCL pin on the breakout to the SCL pin on your Arduino. On an UNO & '328 based
Arduino, this is also known as A5

* Connect the SDA pin on the breakout to the SDA pin on your Arduino. On an UNO & '328 based
Arduino, this is also known as A4

* Connect the VIN pin on the breakout to 3.3V or SV on your Uno (5V is preferred but if you have
a 3V logic Arduino 3V is best)

* Connect the GND pin on the breakout to the GND pin on your Uno

https://en.wikipedia.org/wiki/Degrees_of_freedom

That’s it! With those four wires, you should be able to talk to any of the I2C chips on the board and
run any of the example sketches.

; 1@ L RR

Advanced Setup

GINT - The interrupt pin on the L3GD20 gyroscope

GRDY - The 'ready' pin on the L3GD20 gyroscope

LIN1 - Interrupt pin 1 on the LSM303DLHC

LIN2 - Interrupt pin 2 on the LSM303DLHC

LRDY - The ready pin on the LSM303DLHC

These pins are all outputs from the 10-DOF breakout and are all 3.3V logic

2.3. Downloading Libraries

Place the files in the Arduino Sketch Folder '/libraries' sub-folder. You should end up with a
structure like this:

e arduinosketches/libraries/Adafruit_ 10DOF

» arduinosketches/libraries/Adafruit BMP085

arduinosketches/libraries/Adafruit L3GD20 U

arduinosketches/libraries/Adafruit LSM303DLHC

e arduinosketches/libraries/Adafruit_Sensor

Arduino libraries

o Arduino libraries are a convenient way to share code such as device drivers or
commonly used utility functions. How to install Arduino libraries

2.4. Example Sketch

2.4.1. pitch & roll

sketch pitchrollheading

sensors_event_t accel _event;
sensors_vec_t orientation;

/* Calculate pitch and roll from the raw accelerometer data */
accel.getEvent(&accel_event);
if (dof.accelGetOrientation(&accel _event, &orientation))
{
/* 'orientation' should have valid .roll and .pitch fields */
Serial.print(F("Roll: "));
Serial.print(orientation.roll);
Serial.print(F("; "));
Serial.print(F("Pitch: "));
Serial.print(orientation.pitch);
Serial.print(F("; "));

https://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Arguments

» event: The sensors_event_t variable containing the data from the accelerometer

 orientation: The sensors_vec_t object that will have its .pitch and .roll fields populated
Returns

* true if the operation was successful,

 false if there was an error

Orientation of Axes of Sensitivity and Polarity of Rotation for Accelerometer and Gyroscope

Orientation of Axes of Sensitivity for Compass

3. Areal AHRS system

3.1. Loading the AHRS Sketch

AHRS Sketch

#include <Wire.h>

#include <Adafruit_Sensor.h>
#include <Adafruit LSM303 _U.h>
#include <Adafruit_BMP@85 U.h>
#include <Adafruit_Simple_AHRS.h>

// Create sensor instances.
Adafruit _LSM303 Accel Unified accel(30301);
Adafruit_LSM303_Mag_Unified mag(30302);
Adafruit_BMP@85 Unified bmp(18001);

// Create simple AHRS algorithm using the above sensors.
Adafruit_Simple_AHRS ahrs(&accel, &mag);

// Update this with the correct SLP for accurate altitude measurements
float sealevelPressure = SENSORS_PRESSURE_SEALEVELHPA;

void setup()
{
Serial.beqgin(115200);
Serial.println(F("Adafruit 10 DOF Board AHRS Example")); Serial.println("");

// Initialize the sensors.
accel.begin();
mag.begin();
bmp.begin();

}

void loop(void)
{

sensors_vec_t orientation;

// Use the simple AHRS function to get the current orientation.
if (ahrs.getOrientation(&orientation))
{
/* 'orientation' should have valid .roll and .pitch fields */
Serial.print(F("Orientation: "));
Serial.print(orientation.roll);
Serial.print(F(" "));
Serial.print(orientation.pitch);
Serial.print(F(" "));
Serial.print(orientation.heading);
Serial.println(F(""));
}

// Calculate the altitude using the barometric pressure sensor
sensors_event_t bmp_event;
bmp.getEvent(&bmp_event);
if (bmp_event.pressure)
{
/* Get ambient temperature in C */
float temperature;
bmp.getTemperature(&temperature);
/* Convert atmospheric pressure, SLP and temp to altitude */
Serial.print(F("Alt: "));
Serial.print(bmp.pressureToAltitude(sealevelPressure,
bmp_event.pressure,
temperature));
Serial.println(F(""));
/* Display the temperature */
Serial.print(F("Temp: "));
Serial.print(temperature);

Serial.println(F(""));

}

delay(500);

}

3.2. compile

* Compile the sketch,

» open up the Serial Monitor (Tools > Serial Monitor),

e set the baud rate to 115200

output

-

[£] com12

Altc: -45.80
Temp: 25.28

Alt: -46.40
Temp: 25.28

Alt: -45.859
Temp: 25.2%

tdafruit 10 DOF Pitch/Roll/Heading Example

Orientation:

Orientation:

Orientation:

L »

18.10 7&8.25% 31.70

20.07 T8.02 30.98

15.44 78.259 31.85

-

[7] Autoscroll

:Nnhneenmng v: :llﬁznﬂbaud v:

L

-~

This raw data shows the main orientation data, consisting of 'roll', 'pitch' and 'heading' (or 'yaw) in
degrees, followed by the current altitude and temperature

3.3. Using AHRS Data

The AHRS sketchs reads raw data from the board’s accelerometer/magnetometer and converts the
raw data into easy to understand Euler angles.

In this case, we can see that the roll is about 18°, the pitch is about 78° and the heading or yaw is
about 32°, and the sketch will keep updating itself with the latest values at whatever speed we’ve
set in the sketch.

10

Euler angles, one of the possible ways to describe an orientation

The first attempt to represent an orientation is attributed to Leonhard Euler. He
imagined three reference frames that could rotate one around the other, and
realized that by starting with a fixed reference frame and performing three
rotations, he could get any other reference frame in the space (using two rotations
to fix the vertical axis and other to fix the other two axes). The values of these
three rotations are called Euler angles.

Tait-Bryan angles, another way to describe orientation

These are three angles, also known as yaw, pitch and roll, Navigation angles and
Cardan angles. Mathematically they constitute a set of six possibilities inside the
twelve possible sets of Euler angles, the ordering being the one best used for
describing the orientation of a vehicle such as an airplane. In aerospace
engineering they are usually referred to as Euler angles.

More Info: Rigid_body_dynamics
More Info: Eulers angles

Leonhard Euler

11

https://en.wikipedia.org/wiki/Rigid_body_dynamics
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Leonhard_Euler

3.4. Save/Sending the Data

This raw data can then be sent over the network to the central application.

This will be the subject of another Lab Lesson

3.5. Visualizing Data

3.5.1. The tools, languages, and frameworks

Three.js

Three.js is a cross-browser JavaScript library and Application Programming Interface (API) used to
create and display animated 3D computer graphics in a web browser. Three.js uses WebGL.

Processing

Processing is an open-source graphical library and integrated development environment (IDE)
built for the electronic arts, new media art, and visual design communities with the purpose of
teaching non-programmers the fundamentals of computer programming in a visual context.

Processing uses the Java language, with additional simplifications such as additional classes and
aliased mathematical functions and operations. It also provides a graphical user interface for
simplifying the compilation and execution stage.

The Processing language and IDE were the precursor to other projects including Arduino, Wiring
and p5.js.
p5.js

In 2013, Lauren McCarthy created p5.js, a native JavaScript alternative to Processing.js that has the
official support of the Processing Foundation.

Processing.py

Python Mode for Processing, or Processing.py is a Python interface to the underlying Java toolkit. It
was chiefly developed by Jonathan Feinberg starting in 2010, with contributions from James Gilles
and Ben Alkov

12

Three]S is a wrapper around the browser’s native WebGL API. It’s the de facto
standard 3D library — there are others, like Babylon]JS, but Three is just miles
more popular. The native browser APIs are... painful to work with, you can think
of Three]S kinda like a jQuery for in-browser 3D graphics. Doesn’t give you
anything that’s not already there, it just wraps it all into a user-friendly API

PS5 is not a 3d graphics library, it’s an API for doing creative coding: things like
procedural generation, natural simulations etc. It has some 3D features because it
wraps the native WebGL API, but that’s not it’s core purpose. It is a artistic and
teaching tool — it is occasionally used in production outside of artistic audio/visual
stuff, but not often. It’s basically the JS version of Processing.

More: Processing.js vs. three.js

3.5.2. Requirements

To visualize the data, we’ve put together a basic Processing sketch that loads a 3D model and
renders it using the data generated by the AHRS sketch.

* Processing

* OBJ Loader library for Processing

* G4P GUI library for Processing

The OB]J library is required to load 3D models. It isn’t strictly necessary and you
o could also render a boring cube in Processing, but why play with cubes when you
have rabbits?!

3.5.3. Write the Processing Sketch

Processing Sketch

import processing.serial.?;
import java.awt.datatransfer.*;
import java.awt.Toolkit;

import processing.opengl.*;
import saito.objloader.*;
import g4p_controls.*;

float roll = 0.0F;
float pitch = 0.0F;
float yaw = 0.0F;
float temp = 0.0F;
float alt = 0.0F;

0BJModel model;

// Serial port state.
Serial port;

13

https://www.slideshare.net/victorporof/processingjs-vs-threejs
https://processing.org/
https://code.google.com/archive/p/saitoobjloader/#Download
http://www.lagers.org.uk/g4p/

String buffer = "";
final String serialConfigFile = "serialconfig.txt";
boolean printSerial = false;

// UI controls.

GPanel configPanel;
GDroplList seriallist;

GLabel seriallabel;
GCheckbox printSerialCheckbox;

void setup()

{
size(400, 500, OPENGL);
frameRate(30);
model = new OBJIModel(this);
model.load("bunny.obj");
model.scale(20);

// Serial port setup.
// Grab list of serial ports and choose one that was persisted earlier or default to
the first port.
int selectedPort = 0;
String[] availablePorts = Serial.list();
if (availablePorts == null) {
println("ERROR: No serial ports available!");
exit();
}
String[] serialConfig = loadStrings(serialConfigFile);
if (serialConfig != null && serialConfig.length > 0) {
String savedPort = serialConfig[0];
// Check if saved port is in available ports.
for (int i = @; i < availablePorts.length; ++i) {
if (availablePorts[i].equals(savedPort)) {
selectedPort = i;
}
}

}
// Build serial config UI.

configPanel = new GPanel(this, 10, 10, width-20, 90, "Configuration (click to
hide/show)");

seriallabel = new GLabel(this, @, 20, 80, 25, "Serial port:");

configPanel.addControl(seriallabel);

seriallist = new GDropList(this, 90, 20, 200, 200, 6);

seriallist.setItems(availablePorts, selectedPort);

configPanel.addControl(seriallist);

printSerialCheckbox = new GCheckbox(this, 5, 50, 200, 20, "Print serial data");

printSerialCheckbox.setSelected(printSerial);

configPanel.addControl(printSerialCheckbox);

// Set serial port.

setSerialPort(seriallist.getSelectedText());

14

void draw()

{
background(0,0, 0);

// Set a new co-ordinate space
pushMatrix();

// Simple 3 point lighting for dramatic effect.

// Slightly red light in upper right, slightly blue light in upper left, and white
light from behind.

pointLight(255, 200, 200, 400, 400, 500);

pointLight(200, 200, 255, -400, 400, 500);

pointLight(255, 255, 255, 0, 0, -500);

// Displace objects from 0,0
translate(200, 350, 0);

// Rotate shapes around the X/Y/Z axis (values in radians, 0..Pi*2)
rotateX(radians(roll));

rotateZ(radians(pitch));

rotateY(radians(yaw));

pushMatrix();

noStroke();

model.draw();

popMatrix();

popMatrix();

//print("draw");
}

void serialEvent(Serial p)
{
String incoming = p.readString();
if (printSerial) {
println(incoming);

}

if ((incoming.length() > 8))

{
String[] list = split(incoming, " ");
if ((list.length > 0) && (1ist[@].equals("Orientation:")))
{

roll float(list[1]);
pitch = float(list[2]);
yaw float(list[3]);

buffer = incoming;

}
if ((list.length > @) && (list[@].equals("Alt:")))

{
alt = float(list[1]);

15

16

buffer = incoming;
}
if ((list.length > @) && (list[@].equals("Temp:")))
{
temp = float(list[1]);
buffer = incoming;
}
}
}

// Set serial port to desired value.
void setSerialPort(String portName) {
// Close the port if it's currently open.
if (port != null) {
port.stop();
}
try {
// Open port.
port = new Serial(this, portName, 115200);
port.bufferUntil('\n");
// Persist port in configuration.
saveStrings(serialConfigFile, new String[] { portName });
}
catch (RuntimeException ex) {
// Swallow error if port can't be opened, keep port closed.
port = null;
}
}

// UI event handlers

void handlePanelEvents(GPanel panel, GEvent event) {
// Panel events, do nothing.

}

void handleDroplListEvents(GDroplList list, GEvent event) {
// Drop list events, check if new serial port is selected.
if (list == seriallist) {
setSerialPort(seriallist.getSelectedText());
}
}

void handleToggleControlEvents(GToggleControl checkbox, GEvent event) {
// Checkbox toggle events, check if print events is toggled.
if (checkbox == printSerialCheckbox) {
printSerial = printSerialCheckbox.isSelected();
}
+

3.5.4. Run it

¢ Run the AHRS Sketch on the Uno

* Run the Processing Sketch on the Processing

o Make sure that the appropriate AHRS example sketch is running on the Uno (as
described), and that the Serial Monitor is closed.

P Rabbit10DOF.mp4 (video)
And Voila!

M2 cuberotate

Configuration (click to hide/show)

Serial port: fdewittyUSBO

Print serial data

17

Rabbit10DOF.mp4

Cockpit Simulator

With small changes we can make this too

-——+——-

TURN COORDINATOR
[_| ﬁ l‘
L - R
2 MIN.

NO PITCH
INFORMATION

Appendix A: Source Code

* https://github.com/adafruit/Adafruit AHRS

* https://sourceforge.net/projects/gdp/files/?source=navbar

18

https://github.com/adafruit/Adafruit_AHRS
https://sourceforge.net/projects/g4p/files/?source=navbar

	Sensor node/mote
	Πίνακας περιεχομένων
	1. Sensor node
	2. Sensor node example using IMU sensors
	2.1. IMU
	2.2. Connecting It Up
	2.3. Downloading Libraries
	2.4. Example Sketch
	2.4.1. pitch & roll

	3. A real AHRS system
	3.1. Loading the AHRS Sketch
	3.2. compile
	3.3. Using AHRS Data
	3.4. Save/Sending the Data
	3.5. Visualizing Data
	3.5.1. The tools, languages, and frameworks
	Three.js
	Processing
	p5.js
	Processing.py

	3.5.2. Requirements
	3.5.3. Write the Processing Sketch
	3.5.4. Run it

	Appendix A: Source Code

