Swarm !

I[Iivakag TeEPLEXOUEVWV

1. Swarm - Intro
2. Swarm architecture
2.1. Manager nodes
2.2. Worker nodes
3. Create swarm
3.1. Join token
3.2. Join swarm
3.3. Leave swarm
4. Manage nodes
5. Deploy services and Tasks
5.1. service vs stack
5.2. Build
5.2.1. Create yaml
5.2.2. Build
5.2.3. List services

0 00 N NN U1 Uk W W NN e

_ R
NN

5.2.4. Remove one or more stacks
5.2.5. List tasks

—
w

1. Swarm - Intro

Docker Swarm is a clustering and scheduling tool for Docker containers. With Swarm, IT
administrators and developers can establish and manage a cluster of Docker nodes as a single
virtual system.

Clustering is an important feature for container technology, because it creates a cooperative group
of systems that can provide redundancy, enabling Docker Swarm failover if one or more nodes
experience an outage.

Features:

* Decentralized design: Instead of handling differentiation between node roles at deployment
time, the Docker Engine handles any specialization at runtime. You can deploy both kinds of
nodes, managers and workers, using the Docker Engine.

* Scaling: For each service, you can declare the number of tasks you want to run. When you scale
up or down, the swarm manager automatically adapts by adding or removing tasks to maintain
the desired state.

» Desired state reconciliation: The swarm manager node constantly monitors the cluster state and
reconciles any differences between the actual state and your expressed desired state. For
example, if you set up a service to run 10 replicas of a container, and a worker machine hosting
two of those replicas crashes, the manager creates two new replicas to replace the replicas that
crashed. The swarm manager assigns the new replicas to workers that are running and
available.

* Multi-host networking: You can specify an overlay network for your services. The swarm
manager automatically assigns addresses to the containers on the overlay network when it
initializes or updates the application.

» Service discovery: Swarm manager nodes assign each service in the swarm a unique DNS name
and load balances running containers. You can query every container running in the swarm
through a DNS server embedded in the swarm.

* Load balancing: You can expose the ports for services to an external load balancer. Internally,
the swarm lets you specify how to distribute service containers between nodes.

 Secure by default: Each node in the swarm enforces TLS mutual authentication and encryption
to secure communications between itself and all other nodes. You have the option to use self-
signed root certificates or certificates from a custom root CA.

* Rolling updates: At rollout time you can apply service updates to nodes incrementally. The
swarm manager lets you control the delay between service deployment to different sets of
nodes. If anything goes wrong, you can roll back to a previous version of the service.

2. Swarm architecture

Raft consensus group

Internal distributed state store [
l I l

Manager

Manager

Manager

Worker

Workeré Worker$ Workeré Workeré Workeré

There are two types of nodes: managers and workers.

Workeré

Gossip network

2.1. Manager nodes

Manager nodes handle cluster management tasks:

* maintaining cluster state
* scheduling services
* serving swarm mode HTTP API endpoints

Using a Raft implementation, the managers maintain a consistent internal state of the entire swarm
and all the services running on it.

To take advantage of swarm mode’s fault-tolerance features, Docker recommends you implement
an odd number of nodes according to your organization’s high-availability requirements. When
you have multiple managers you can recover from the failure of a manager node without
downtime.

* A three-manager swarm tolerates a maximum loss of one manager.

* A five-manager swarm tolerates a maximum simultaneous loss of two manager nodes.

* An N manager cluster tolerates the loss of at most (N-1)/2 managers.

2.2. Worker nodes

Worker nodes are also instances of Docker Engine whose sole purpose is to execute containers.
Worker nodes don’t participate in the Raft distributed state, make scheduling decisions, or serve the
swarm mode HTTP APIL

You can create a swarm of one manager node, but you cannot have a worker node without at least
one manager node. By default, all managers are also workers.

3. Create swarm

Initialize a swarm. The docker engine targeted by this command becomes a manager in the newly
created single-node swarm.

create swarm

docker swarm init --advertise-addr ip
Swarm initialized: current node (bvz8lupdecsjowjz393c@9vti) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join \

--token SWMTKN-1-3pubhszjas19xyp7ghgosyx9k8atbfcr8p2is99znpy26u21kl-
Tawxwuwd3z9j1z3puu7rcgdbx \

172.17.0.2:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

3.1. Join token

Join tokens are secrets that allow a node to join the swarm.
There are two different join tokens available,

¢ one for the worker role and

* one for the manager role.

join token

docker swarm join-token worker
To add a worker to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-3pubhszjas19xyp7ghgosyx9k8atbfcr8p2is99znpy26u21kl-

Tawxwuwd3z9j1z3puu7rcgdbx \
172.17.0.2:2377

docker swarm join-token manager
To add a manager to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-3pubhszjas19xyp7ghgosyx9k8atbfcr8p2is99znpy26u21kl-

7p73s1dx5indtatdymyhg9hu2 \
172.17.0.2:2377

3.2. Join swarm

Join a node to a swarm. The node joins as a manager node or worker node based upon the token
you pass with the --token flag. If you pass a manager token, the node joins as a manager. If you pass
a worker token, the node joins as a worker.

join worker

docker swarm join --token SWMTKN-1-3pubhszjas19xyp7ghgosyx9k8atbfcr8p2is99znpy26u2lkl-
Tawxwuwd3z9j1z3puu7rcgdbx --advertise-addr eth1:2377 192.168.99.121:2377
This node joined a swarm as a worker.

join manager

docker swarm join --token SWMTKN-1-3pubhszjas19xyp7ghgosyx9k8atbfcr8p2is99znpy26u21lkl-
7p73s1dx5indtatdymyhg9hu? --advertise-addr eth1:2377 192.168.99.121:2377
This node joined a swarm as a manager.

3.3. Leave swarm

When you run this command on a worker, that worker leaves the swarm.
docker swarm leave

You can use the --force option on a manager to remove it from the swarm.

INFO

The safe way to remove a manager from a swarm is to demote it to a worker and
o then direct it to leave the quorum without using --force

docker node demote id

4. Manage nodes

INFO

This is a cluster management command, and must be executed on a swarm
manager node.

¢ docker node Is List nodes in the swarm
docker node 1s

* docker node demote _ Demote one or more nodes from manager in the swarm_

* docker node inspect _ Display detailed information on one or more nodes_

docker node promote _ Promote one or more nodes to manager in the swarm_
* docker node ps _ List tasks running on one or more nodes, defaults to current node_
¢ docker node rm _ Remove one or more nodes from the swarm_

» docker node update _ Update a node_

docker node inspect _ Display detailed information on one or more nodes_

docker node inspect id # from 1s

{
"ID": "e216jshn25ckzbvmwlnh5jr3g",
"Version": {
"Index": 10
b
"CreatedAt": "2017-05-16T22:52:44.99106627",
"UpdatedAt": "2017-05-16T22:52:45.2308780437",
"Spec": {
"Role": "manager",
"Availability": "active"
Iy,
"Description": {
"Hostname": "swarm-manager",
"Platform": {
"Architecture": "x86_64",
"0S": "linux"
H
"Resources": {
"NanoCPUs": 1000000000,
"MemoryBytes": 1039843328
I¥
"Engine": {
"EngineVersion": "17.06.0-ce",
"Plugins": [
{
"Type": "Volume",
Jr
"Status": {
"State": "ready",
"Addr": "168.0.32.137"
+
"ManagerStatus": {
"Leader": true,
"Reachability": "reachable",
"Addr": "168.0.32.137:2377"
}
}
]

INFO
Filtering output with jq

i I
apt update
apt install jgq

docker node inspect id | jq -r '.[]["Status"]["State"]"

5. Deploy services and Tasks

To deploy an application image when Docker Engine is in swarm mode, you create a service.

A service is the image for a microservice within the context of some larger application.

Examples of services might include an HTTP server, a database, or any other type of executable
program that you wish to run in a distributed environment.

A task is the atomic unit of scheduling within a swarm.

When you declare a desired service state by creating or updating a service, the orchestrator realizes
the desired state by scheduling tasks.

For instance, you define a service that instructs the orchestrator to keep three instances of
an HTTP listener running at all times.

The orchestrator responds by creating three tasks.

Each task is a slot that the scheduler fills by spawning a container.
task container
I

_ nginx. 1 nginx:latest
service
| available node
3 nginx
replicas P l'lgil'lx.2 nginx:latest

swarm manager available node

nginx.3 nginx:latest

available node

5.1. service vs stack

* A Service defines one or more instances of a single image deployed on one or more machines
(described by one entry in the services part of yaml files).

» A Stack defines a group of heterogeneous services (described by the whole yaml file).

The docker service command is used when managing individual service on a docker swarm
cluster.

The docker stack command can be used to manage a multi-service application.

5.2. Build

INFO

This is a cluster management command, and must be executed on a swarm
manager node.

5.2.1. Create yaml

yml example MPI (save as run.yml)

version: "3.8"

services:
master:
image: image
user: root

environment:
Pass environment variables to containers CUSTOM
- PASSWORD=dgergergergerrfgwehrtsger
- PASSWORDVIEW=rtyrwtyrwftertqueteyserfy5ebytrg
- SERVERROLE=master
- SERVERWEB=no
Pass environment variables to containers FROM ENGINE see inspect
- NODENAME={{.Node.Hostname}}
- NODEID={{.Node.ID}}
- SERVICEID={{.Service.ID}}
- SERVICENAME={{.Service.Name}}
- TASKID={{.Task.ID}}
- TASKNAME={{.Task.Name}}
- TASKREPID={{.Task.Slot}}
deploy:
mode: global # see image replica-vs-global
replicas: 1
placement:
max_replicas_per_node: 1
constraints:
- node.role == worker
#- node.labels.region == region
resources:
limits:
cpus: '0.50'
memory: 500M
reservations:

cpus: '0.25'
memory: 200M
restart_policy:
condition: on-failure
delay: 5s
max_attempts: 5
window: 120s
update_config:
parallelism: 2
delay: 10s
order: stop-first
networks:
mpi2-net:
ports:
- "5580:80"
- "5588:8088"

slave:
image: image
user: root
environment:
- PASSWORD=rtyrthrthyrthyrtyrtyrty
- PASSWORDVIEW=rtyrtuyrtuyrt
- SERVERROLE=slave
- SERVERWEB=no
- NODENAME={{.Node.Hostname}}
- NODEID={{.Node.ID}}
- SERVICEID={{.Service.ID}}
- SERVICENAME={{.Service.Name}}
- TASKID={{.Task.ID}}
- TASKNAME={{.Task.Name}}
- TASKREPID={{.Task.Slot}}
deploy:
mode: global # see image replica-vs-global
replicas: 9
placement:
max_replicas_per_node: 1
constraints:
- node.role == worker
- node.labels.region == region2
resources:
limits:
cpus: '0.50'
memory: 500M
reservations:
cpus: '0.25'
memory: 200M
restart_policy:
condition: on-failure
delay: 5s
max_attempts: 5

10

window: 120s
update_config:
parallelism: 2

delay: 10s
order: stop-first
networks:
mpi2-net:
ports:
- "5581:80"
- "5590:8088"
web:
image: image
user: root

environment:
- SERVERROLE=web
- SERVERWEB=yes
- NODENAME={{.Node.Hostname}}
- NODEID={{.Node.ID}}
- SERVICEID={{.Service.ID}}
- SERVICENAME={{.Service.Name}}
- TASKID={{.Task.ID}}
- TASKNAME={{.Task.Name}}
- TASKREPID={{.Task.Slot}}
deploy:
mode: global # see image replica-vs-global
replicas: 1
placement:
constraints:
- node.role == worker
- node.labels.region == region3
resources:
limits:
cpus: '0.50'
memory: 500M
reservations:
cpus: '0.25'
memory: 200M
restart_policy:
condition: on-failure
delay: 5s
max_attempts: 5
window: 120s
update_config:
parallelism: 2
delay: 10s
order: stop-first
networks:
mpi2-net:
ports:

- "5598:80"
- "5599:8088"

networks:
mpi2-net:

replicas-vs-global

."-‘-'-‘---‘” my-nEtwork --_-n_--_.h“--_-h.
worker node . / worker node

manager

node .
workar: node / \ worker node

replicated service global service with
with 3 replicas replicas on every node

INFO

YAML (a recursive acronym for "YAML Ain’t Markup Language") is a human-
readable data-serialization language.

It is commonly used for configuration files and in applications where data is being
stored or transmitted.

YAML targets many of the same communications applications as Extensible
o Markup Language (XML) but has a minimal syntax which intentionally differs
from SGML

It uses Python-style indentation to indicate nesting
From Wikipedia, the free encyclopedia

more: Learn YAML in five minutes! https://www.codeproject.com/Articles/1214409/
Learn-YAML-in-five-minutes

5.2.2. Build

build

docker stack deploy -c run.yml my_service

5.2.3. List services

List the services that are running as part of the specified stack.

docker stack services

List ALL services are running in the swarm.

docker service 1s

5.2.4. Remove one or more stacks

Remove the stack from the swarm.

docker stack rm

Removes the specified services from the swarm.

docker service rm

12

https://www.codeproject.com/Articles/1214409/Learn-YAML-in-five-minutes
https://www.codeproject.com/Articles/1214409/Learn-YAML-in-five-minutes

5.2.5. List tasks

List the tasks that are running as part of the specified services.

docker service ps

List the tasks in the stack

docker stack ps

INFO

Command-line completion (also tab completion) is a common feature of command-line
interpreters, in which the program automatically fills in partially typed commands.

more info: https://en.wikipedia.org/wiki/Command-line_completion

13

https://en.wikipedia.org/wiki/Command-line_completion

	Swarm !
	Πίνακας περιεχομένων
	1. Swarm - Intro
	2. Swarm architecture
	2.1. Manager nodes
	2.2. Worker nodes

	3. Create swarm
	3.1. Join token
	3.2. Join swarm
	3.3. Leave swarm

	4. Manage nodes
	5. Deploy services and Tasks
	5.1. service vs stack
	5.2. Build
	5.2.1. Create yaml
	5.2.2. Build
	5.2.3. List services
	5.2.4. Remove one or more stacks
	5.2.5. List tasks

