Iptables !

Table of Contents

1. iptables
1.1. Installation
1.2. Front-ends
1.2.1. Console
1.2.2. Graphical
2. Basic concepts
2.1. Table
2.1.1. Filter
2.1.2. Nat
2.1.3. Mangle
2.1.4. Raw
2.1.5. Security
2.2. Rules
2.3. Traversing Chains
3. Usage
3.1. Showing the current rules
3.2. Resetting rules
3.3. Editing rules
3.4. Examples
3.4.1. Block Traffic by PortPermalink
3.4.2. Drop Traffic
3.4.3. Block or Allow Traffic by Port Number
3.5. More Examples

© © © 00 00 N N N9 o oo oy U1 Uk NN e

==
- o

Appendix A: How to use iptables

1. iptables

iptables is a command line utility for configuring Linux kernel firewall implemented within the
Netfilter project. The term "iptables" is also commonly used to refer to this kernel-level firewall. It
can be configured directly with iptables, or by using one of the many

More: wikipedia
e Console tools

and

https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Iptables

* Graphical front-ends.

iptables is used for IPv4 and "ip6tables" is used for ihttps://en.wikipedia.org/wiki/IPv6[IPv6]. Both
"iptables" and "ip6tables" have the same syntax, but some options are specific to either IPv4 or
IPv6.

1.1. Installation

The Swarmlab.io kernel is compiled with iptables support.

1.2. Front-ends

1.2.1. Console

» Shorewall, High-level tool for configuring Netfilter.
You describe your firewall/gateway requirements using entries in a set of configuration files.
shorewall

* Arno’s Secure firewall for both single and multi-homed machines.

Very easy to configure, handy to manage and highly customizable. Supports: NAT and SNAT, port
forwarding, ADSL ethernet modems with both static and dynamically assigned IPs, MAC address
filtering, stealth port scan detection, DMZ and DMZ-2-LAN forwarding, protection against SYN/ICMP
flooding, extensive user definable logging with rate limiting to prevent log flooding, all IP protocols
and VPNs such as IPsec, plugin support to add extra features. |

arno-iptables-firewall

* FireHOL Language to express firewalling rules, not just a script that produces some kind of a
firewall. It makes building even sophisticated firewalls easy - the way you want it.

http://firehol.sourceforge.net

» firewalld (firewall-cmd) Daemon and console interface for configuring network and firewall
zones as well as setting up and configuring firewall rules.

firewalld

1.2.2. Graphical

e Firewall Builder

firewall configuration and management tool that supports iptables (netfilter), ipfilter, pf, ipfw, Cisco
PIX (FWSM, ASA) and Cisco routers extended access lists. The program runs on Linux, FreeBSD,
OpenBSD, Windows and macOS and can manage both local and remote firewalls.

fwbuilder

https://en.wikipedia.org/wiki/IPv4
http://www.shorewall.net/
http://rocky.eld.leidenuniv.nl/
http://firehol.sourceforge.net
https://firewalld.org
http://fwbuilder.sourceforge.net

e firewalld

(firewall-config) Daemon and graphical interface for configuring network and firewall zones as
well as setting up and configuring firewall rules.

firewalld
* FireStarter
High-level GUI Iptables firewall for Linux systems

firestarter

2. Basic concepts

iptables is used to inspect, modify, forward, redirect, and/or drop IP packets.
* The code for filtering IP packets is already built into the kernel and is organized into a collection
of tables, each with a specific purpose.

» The tables are made up of a set of predefined chains, and the chains contain rules which are
traversed in order.

* Each rule consists of a predicate of potential matches and a corresponding action (called a
target) which is executed if the predicate is true; i.e. the conditions are matched.

« If the IP packet reaches the end of a built-in chain, including an empty chain, then the chain’s
policy target determines the final destination of the IP packet.

iptables is the user utility which allows you to work with these chains/rules.

Understanding how iptables works

The key to understanding how iptables works is this chart.

The lowercase word on top is the table and the upper case word below is the
chain.

* Every IP packet that comes in on any network interface passes through this
flow chart from top to bottom.

o All interfaces are handled the same way; it’s up to you to define rules that
treat them differently.

Some packets

+ are intended for local processes, hence come in from the top of the chart and
stop at Local Proces,

* while other packets are generated by local processes; hence start at Local
Process and proceed downward through the flowchart.

A detailed explanation here.

https://firewalld.org
http://www.fs-security.com
http://docs.swarmlab.io/lab/sec/tables_traverse.jpg
http://docs.swarmlab.io/SwarmLab-HowTos/labs/os2/ex-3a_iptables-flow-chart.adoc.html

In the vast majority of use cases you won’t need to use the raw, mangle, or security tables at all.

Consequently, the following chart depicts a simplified network packet flow through iptables:

XXXXXXXXXXXXXXXXXX
XXX Network XXX
XXXXXXXXXXXXXXXXXX
+
|
v
tomm e + Fomm e +
|table: filter| <---+ | table: nat |
|chain: INPUT | | | chain: PREROUTING|
+----- H------- + | Ho-mmmm-- Hommmm - +
| | |
v | v
[local process] | Fkkkkk ok kkkFdkk o +
| R + Routing decision +------ > |table: filter |
v *kkkkhkkhkkkkkikkikk | Cha-l n: FORWARD |
*khkkkhkkhkkhkkkhkkhkk $--—-- F-—————— +
Routing decision
*khkkkkkhkkhkkkhkkikk |
| |
v kkhkkkhkkhkkkhkkikkikk |
e & R > Routing decision <--------------- +
| tab'l_e 0 nat | | kkkkkhkkkkkkkhkkkk
|chain: OUTPUT| | +
+----- R + | |
| | v
v | R e e +
L SET LT LR T + | | table: nat |
|table: filter | +----+ | chain: POSTROUTING|
|chain: OUTPUT | tommmmo- tomm e +
Fomm e + |
v
XXXXXXXXXXXXXXXXXX
XXX Network XXX
XXXXXXXXXXXXXXXXXX
2.1. Table
iptables contains five tables:
o Chains
Tables consist of chains, which are lists of rules which are followed in order.

2.1.1. Filter
This is the default table.

Its built-in chains are:

Input: packets going to local sockets
Forward: packets routed through the server
Output: locally generated packets

2.1.2. Nat
When a packet creates a new connection, this table is used.

Its built-in chains are:

Prerouting: designating packets when they come in
Output: Tlocally generated packets before routing takes place
Postrouting: altering packets on the way out

2.1.3. Mangle
Used for special altering of packets.

Its built-in chains are:

Prerouting: incoming packets

Postrouting: outgoing packets

Output: locally generated packets that are being altered
Input: packets coming directly into the server

Forward: packets being routed through the server

2.1.4. Raw
Primarily used for configuring exemptions from connection tracking.

Its built-in chains are:

Prerouting: packets that arrive by the network interface
Output: processes that are locally generated

2.1.5. Security

Used for Mandatory Access Control (MAC) rules. After the filter table, the security table is accessed
next.

Its built-in chains are:

Input: packets entering the server
Output: Tlocally generated packets
Forward: packets passing through the server

e In most common use cases you will only use two of these: filter and nat.

2.2. Rules

Packet filtering is based on rules, which are specified by multiple matches (conditions the packet
must satisfy so that the rule can be applied), and one target (action taken when the packet matches
all conditions).

The typical things a rule might match on are

» what interface the packet came in on (e.g ethO or eth1),
» what type of packet it is ICMP, TCP, or UDP),

* or the destination port of the packet.
Targets are specified using the -j or --jump option.

Targets can be either - user-defined chains (i.e. if these conditions are matched, jump to the
following user-defined chain and continue processing there), one of the special built-in targets, - or
a target extension.

o * Built-in targets are ACCEPT, DROP, QUEUE and RETURN

* target extensions are, for example, REJECT and LOG.

« If the target is a built-in target, the fate of the packet is decided immediately and processing of
the packet in current table is stopped.

* If the target is a user-defined chain and the fate of the packet is not decided by this second

chain, it will be filtered against the remaining rules of the original chain.

Target extensions can be either terminating (as built-in targets) or non-terminating (as user-
defined chains)

2.3. Traversing Chains

A network packet received on any interface traverses the traffic control chains of tables in the
order shown in the this chart

» The first routing decision involves deciding if the final destination of the packet is the local
machine (in which case the packet traverses through the INPUT chains

* or elsewhere (in which case the packet traverses through the FORWARD chains.

http://docs.swarmlab.io/lab/sec/tables_traverse.jpg

» Subsequent routing decisions involve deciding what interface to assign to an outgoing packet.

At each chain in the path, every rule in that chain is evaluated in order and whenever a rule
matches, the corresponding target/jump action is executed.

The 3 most commonly used targets are ACCEPT, DROP, and jump to a user-defined chain.
o While built-in chains can have default policies, user-defined chains can not.

* If every rule in a chain that you jumped fails to provide a complete match, the packet is dropped
back into the calling chain as illustrated here.

 If at any time a complete match is achieved for a rule with a DROP target, the packet is dropped
and no further processing is done.

* If a packet is ACCEPTed within a chain, it will be ACCEPTed in all superset chains also and it
will not traverse any of the superset chains any further.

However, be aware that the packet will continue to traverse all other chains in other tables in the
normal fashion.

3. Usage

3.1. Showing the current rules

iptables -nvL

Chain INPUT (policy ACCEPT @ packets, @ bytes)
pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT @ packets, @ bytes)
pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT @ packets, @ bytes)
pkts bytes target prot opt in out source destination

If the output looks like the above, then there are no rules (i.e. nothing is blocked) in the default
filter table

3.2. Resetting rules

You can flush and reset iptables to default using these commands:

http://docs.swarmlab.io/lab/sec/images/table_subtraverse.jpg

iptables -F

iptables -X

iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X
iptables -t raw -F
iptables -t raw -X
iptables -t security -F
iptables -t security -X
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT

= R O R O o R o = o = =

The -F command with no arguments flushes all the chains in its current table. Similarly, -X deletes
all empty non-default chains in a table.

Individual chains may be flushed or deleted by following -F and -X with a [chain] argument.

3.3. Editing rules

Rules can be edited by

* appending -A a rule to a chain,
* inserting -1 it at a specific position on the chain,
* replacing -R an existing rule,

* or deleting -D it.
The first three commands are exemplified in the following.

First of all, our computer is not a router (unless, of course, it is a router). We want to change the
default policy on the FORWARD chain from ACCEPT to DROP.

iptables -P FORWARD DROP

3.4. Examples

o We are going to use Shorewall as an iptables configuration tool.

See Appendix.

Here are some examples of "raw" iptables command lines.

3.4.1. Block Traffic by PortPermalink
You may use a port to block all traffic coming in on a specific interface.

For example:
iptables -A INPUT -j DROP -p tcp --destination-port 110 -i eth@

Let’s examine what each part of this command does:

» -A will add or append the rule to the end of the chain.

TNPUT will add the rule to the table.

DROP means the packets are discarded.

* -p tcp means the rule will only drop TCP packets.
* -destination-port 110 filters packets targeted to port 110.

* -i eth0 means this rule will impact only packets arriving on the ethO interface.

3.4.2. Drop Traffic

In order to drop all incoming traffic from a specific IP address, use the iptables command with the
following options:

iptables -I INPUT -s 198.51.100.0 -j DROP
To remove these rules, use the --delete or -D option:

iptables --delete INPUT -s 198.51.100.0 -j DROP
iptables -D INPUT -s 198.51.100.0 -j DROP

3.4.3. Block or Allow Traffic by Port Number

One way to create a firewall is to block all traffic to the system and then allow traffic on certain
ports.

Below is a sample sequence of commands to illustrate the process:

iptables
iptables
iptables
ACCEPT

iptables

22,25,53,

iptables
iptables
iptables

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -i 1o -m comment --comment "Allow loopback connections" -j ACCEPT
-A INPUT -p icmp -m comment --comment "Allow Ping to work as expected" -j

-A INPUT -p tcp -m multiport --destination-ports
80,443,465,5222,5269,5280,8999:9003 -j ACCEPT

-A INPUT -p udp -m multiport --destination-ports 53 -j ACCEPT
-P INPUT DROP

-P FORWARD DROP

Let’s break down the example above.

The first two commands add or append rules to the INPUT chain in order to allow access on

specific ports.

The -p tcp and -p udp options specify either UDP or TCP packet types.

The -m multiport function matches packets on the basis of their source or destination ports, and

can accept the specification of up to 15 ports.

Multiport also accepts ranges such as 8999:9003 which counts as 2 of the 15 possible ports, but

matches ports 8999, 9000, 9001, 9002, and 9003.

The next command allows all incoming and outgoing packets that are associated with existing

connections so that they will not be inadvertently blocked by the firewall.

The final two commands use the -P option to describe the default policy for these chains. As a

result, all packets processed by INPUT and FORWARD will be dropped by default.

Note that the rules described above only control incoming packets, and do not

limit outgoing connections.

3.5. More Examples

10

Allow all loopback (lo@) traffic and reject traffic
to localhost that does not originate from 100.

-A INPUT -i lo -j ACCEPT

-A INPUT ! -1 1o -s 127.0.0.0/8 -j REJECT

Allow ping.
-A INPUT -p icmp -m state --state NEW --icmp-type 8 -j ACCEPT

Allow SSH connections.
-A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT

Allow HTTP and HTTPS connections from anywhere

(the normal ports for web servers).

-A INPUT -p tcp --dport 80 -m state --state NEW -j ACCEPT
-A INPUT -p tcp --dport 443 -m state --state NEW -j ACCEPT

Allow inbound traffic from established connections.
This includes ICMP error returns.
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Log what was incoming but denied (optional but useful).
-A INPUT -m limit --limit 5/min -j LOG --log-prefix "iptables_INPUT_denied: " --log
-level 7

Reject all other inbound.
-A INPUT -j REJECT

Log any traffic that was sent to you

for forwarding (optional but useful).

-A FORWARD -m limit --limit 5/min -j LOG --log-prefix "iptables_FORWARD_denied: "
--log-level 7

Reject all traffic forwarding.
-A FORWARD -j REJECT

Appendix A: How to use iptables

Shorewall is not the easiest to use of the available iptables configuration tools but I believe that it is
the most flexible and powerful.

It can handle complex and fast changing network environments.

It needs multiple configuration files, even for simple setups.

Suitable for powerusers! - Most likely there are a lot of these among our Students :-)
Shorewall is very popular!

Origin

11

https://wiki.archlinux.org

12

	Iptables !
	Table of Contents
	1. iptables
	1.1. Installation
	1.2. Front-ends
	1.2.1. Console
	1.2.2. Graphical

	2. Basic concepts
	2.1. Table
	2.1.1. Filter
	2.1.2. Nat
	2.1.3. Mangle
	2.1.4. Raw
	2.1.5. Security

	2.2. Rules
	2.3. Traversing Chains

	3. Usage
	3.1. Showing the current rules
	3.2. Resetting rules
	3.3. Editing rules
	3.4. Examples
	3.4.1. Block Traffic by PortPermalink
	3.4.2. Drop Traffic
	3.4.3. Block or Allow Traffic by Port Number

	3.5. More Examples

	Appendix A: How to use iptables

