You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

78 lines
3.8 KiB

5 years ago
= Swarm !
Apostolos rootApostolos@swarmlab.io
// Metadata:
:description: IoT Εισαγωγή στο Swarm
:keywords: Cloud, swarm
:data-uri:
:toc: right
:toc-title: Πίνακας περιεχομένων
:toclevels: 4
:source-highlighter: highlight
:icons: font
:sectnums:
include::header.adoc[]
{empty} +
== Swarm - Intro
A swarm consists of one or more nodes: physical or virtual machines running Docker Engine 1.12 or later in swarm mode.
- Decentralized design: Instead of handling differentiation between node roles at deployment time, the Docker Engine handles any specialization at runtime. You can deploy both kinds of nodes, managers and workers, using the Docker Engine.
- Scaling: For each service, you can declare the number of tasks you want to run. When you scale up or down, the swarm manager automatically adapts by adding or removing tasks to maintain the desired state.
- Desired state reconciliation: The swarm manager node constantly monitors the cluster state and reconciles any differences between the actual state and your expressed desired state. For example, if you set up a service to run 10 replicas of a container, and a worker machine hosting two of those replicas crashes, the manager creates two new replicas to replace the replicas that crashed. The swarm manager assigns the new replicas to workers that are running and available.
- Multi-host networking: You can specify an overlay network for your services. The swarm manager automatically assigns addresses to the containers on the overlay network when it initializes or updates the application.
- Service discovery: Swarm manager nodes assign each service in the swarm a unique DNS name and load balances running containers. You can query every container running in the swarm through a DNS server embedded in the swarm.
- Load balancing: You can expose the ports for services to an external load balancer. Internally, the swarm lets you specify how to distribute service containers between nodes.
- Secure by default: Each node in the swarm enforces TLS mutual authentication and encryption to secure communications between itself and all other nodes. You have the option to use self-signed root certificates or certificates from a custom root CA.
- Rolling updates: At rollout time you can apply service updates to nodes incrementally. The swarm manager lets you control the delay between service deployment to different sets of nodes. If anything goes wrong, you can roll back to a previous version of the service.
== Swarm architecture
image:./swarm-diagram.png[alt="Swarm"] +
There are two types of nodes: *managers* and *workers.*
=== Manager nodes
Manager nodes handle cluster management tasks:
- maintaining cluster state
- scheduling services
- serving swarm mode HTTP API endpoints
Using a Raft implementation, the managers maintain a consistent internal state of the entire swarm and all the services running on it.
To take advantage of swarm mode’s fault-tolerance features, Docker recommends you implement an odd number of nodes according to your organization’s high-availability requirements. When you have multiple managers you can recover from the failure of a manager node without downtime.
- A three-manager swarm tolerates a maximum loss of one manager.
- A five-manager swarm tolerates a maximum simultaneous loss of two manager nodes.
- An N manager cluster tolerates the loss of at most (N-1)/2 managers.
=== Worker nodes
Worker nodes are also instances of Docker Engine whose sole purpose is to execute containers. Worker nodes don’t participate in the Raft distributed state, make scheduling decisions, or serve the swarm mode HTTP API.
You can create a swarm of one manager node, but you cannot have a worker node without at least one manager node. By default, all managers are also workers.